
An information-theoretic study of fish swimming in the wake of a pitching

airfoil

Abstract

Swimming in schools affords several advantages for fish, including enhanced ability to escape from predators,
searching for food, and finding correct migratory routes. However, the role of hydrodynamics in coordinated
swimming is still not fully understood due to a lack of data-driven approaches to disentangle causes from
effects. In an effort to elucidate the mechanisms underlying fish schooling, we propose an empirical study
that integrates information theory and experimental biology. We studied the interactions between an actively
pitching airfoil and a fish swimming in a flow. The pitching frequency of the airfoil was varied randomly
over time, eliciting an information-rich interaction between the airfoil and the fish. Within an information-
theoretic framework, we examined the information content of fish tail beating and information transfer
from the airfoil to the fish. The proposed framework may help improve our understanding of the role
of hydrodynamics in fish swimming, thereby supporting hypothesis-driven studies on the hydrodynamic
advantages of fish schooling.
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1. Introduction

For its geometric complexity and visual allure,
fish schooling has attracted the interest of the sci-
entific community and general public for centuries.
From herring to tuna, schooling is prevalent across
several fish species in salt and fresh waters [1, 2].
The emergence of schooling has often been at-
tributed to the energetic advantages of coordinated
swimming [3, 4, 5]. As suggested by Weihs [3] in
his seminal work in the 1970s, schooling behavior
could be associated with fish preference to form a
diamond pattern, where fish in a following position
could benefit from the leading fish through vortex-
induced pressure variations. More specifically, fol-
lowers should experience a reduction in the rela-
tive flow speed created by the wake of the leaders,
thereby reducing the cost of swimming. Past en-
deavors have offered evidence of the hydrodynamic
advantage in schooling fish [4, 5, 6, 7, 8].
The possibility of fish exploiting vortices in the

flow has been extensively studied experimentally
and numerically. For example, a rainbow trout
was found to actively interact with the von Kármán
street behind a cylinder by amplifying its body un-
dulations [9]. A decrease in the muscle activity
has been observed in fish exploiting vortices, sug-

gesting a reduction in the cost of swimming [10].
Two-dimensional simulations have also confirmed
the higher hydrodynamic efficiency of a diamond
school pattern compared with solitary swimming
fish [11].

However, new studies challenge the complete en-
dorsement of Weihs’ explanation, or, at the least,
point at some overlooked physical phenomena that
warrant further research. For example, three-
dimensional numerical simulations of fish swimming
at realistic Reynolds numbers (Re ∼ 105) show that
the wake of a fish is not as structured as proposed
by Weihs. In addition, simulations do not indicate
the presence of vortices near the head of the follow-
ing fish [5], potentially ruling out the premise that
a follower can locate a low-speed flow region and
opt to swim therein. Particularly baffling are the
recent findings by Ashraf et al.[12], which demon-
strated that at sufficiently large swimming speeds,
fish could leave the diamond pattern in favor of a
“phalanx”, where there is no leader and all fish beat
their tails almost in synchrony. Perhaps, interac-
tion in a phalanx is realized through a faster path-
way than vortex-induced pressure, involving sur-
face and pressure waves. This might explain the
nearly synchronized motion of the fish and the large
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cohesion in the phalanx, although questioning the
premise that fish schooling is controlled by vortex-
based interactions.
Due to the lack of data-driven techniques to dis-

entangle causes from effects in coordinated swim-
ming, a mathematically-principled understanding
of fish schooling remains elusive. We argue that in-
formation theory could offer a potent framework for
examining the extent and time scale of interactions
between fish, in a model-free approach. Adapted
from thermodynamics, the concept of entropy has
been introduced as a measure of the degree of un-
certainty in predicting the outcome of a random
variable. For example, considering fish swimming,
high information is associated with erratic swim-
ming composed of frequent change of directions and
speed, while low-information would relate to steady
swimming, where the fish body would bend period-
ically.
Building upon the seminal work of Shannon [13],

information theory has been applied across a dis-
parate range of scientific fields to strengthen our
capacity to analyze dynamical processes, support
theoretical predictions, and undertake complex di-
agnostics. For example, Ref. [14] has demonstrated
the possibility of using entropy to examine the ef-
fect of drug exposure on the locomotor activity of
rats. Ref. [15] has put forward a powerful array of
entropy-related notions to evaluate the predictabil-
ity of large-scale turbulence and measure informa-
tion content in ensemble predictions. Ref. [16] has
unveiled new pathways of global energy flow in the
climate system which suggest that oceanic surface
circulation has a critical role on global temperature.
Despite the burgeoning applications of informa-

tion theory across research fields, little work has
explored the possibility of employing information-
theoretic approaches to study hydrodynamic in-
teractions among swimming fish. As a first step
toward understanding the hydrodynamics of fish
swimming, here, we explore the possibility of study-
ing the hydrodynamic interaction between a live
fish and a pitching airfoil through information the-
ory. The premise of using information theory
to infer hydrodynamic interactions has been de-
mostrated in our previous work on a fluid-structure
interaction problem, in which we studied the in-
teractions between two pitching airfoils through a
fluid medium, where pitching dynamics of the air-
foils were systematically controlled [17]. We demon-
strated the feasibility of an information-theoretic
approach to infer which airfoil was actively con-

trolled and which was instead passively responding
due to hydrodynamic coupling. We also showed
that the strength and time scale of the information
flow between the airfoils related to the distance be-
tween them and to the hydrodynamic pathway that
supported the interaction (vortex advection versus
acoustic or surface waves).
Here, we lay the foundations for extending this

framework to the study of hydrodynamic inter-
actions in fish schools, by presenting a proof-of-
concept experiment on the interaction between an
active airfoil and a live fish. Specifically, we de-
signed a swim tunnel to house an actively-controlled
pitching airfoil and a live fish. The pitching air-
foil was positioned upstream of the fish swimming
zone to create disturbances in the flow, similar to
those elicited by the tail beat of a leading fish. We
simultaneously recorded the pitching angle of the
airfoil and the tail beat motion of the fish using
a high speed camera for four different flow speeds,
from zero to two body lengths per second. Upon
these measurements, we pursued an information-
theoretic analysis of fish swimming.
First, we scored fish entropy, as a measure of the

uncertainty associated with fish swimming. Sec-
ond, we examined mutual information between the
present and the past state of a fish to elucidate the
degree of predictability of fish motion. To assess
whether fish motion could be partially explained
by the pitching of the airfoil, we measured mutual
information between them. Finally, to delve more
into the influence of the airfoil on the fish, we quan-
tified transfer entropy [18], associated with the im-
provement in the prediction of the present state of
the fish swimming from its past due to additional
knowledge about the airfoil pitching. Through
a systematic parametric analysis on the key set-
tings of the information-theoretic approach, we at-
tempted at illustrating the flexibility of the imple-
mentation, the robustness of the results, and some
of the potential limitations of the study.

2. Theoretical background

2.1. Entropy and mutual information

In information theory, the uncertainty of a dis-
crete random variable, X, can be measured through
the notion of entropy, originally defined by Shannon
[13] as

H(X) = −
∑

x∈ΩX

Pr{X = x} log2 Pr{X = x}, (1)
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where Pr{·} denotes probability, x is a realization
of X, and the set ΩX is the sample space that con-
tains all possible realizations ofX. By construction,
entropy is a nonnegative quantity.
The right hand side of (1) is the opposite of the

expectation of the logarithm of the probability mass
function, such that the joint entropy of two random
variables, X and Y , is defined as [19]

H(X,Y ) = −
∑

x∈ΩX ,y∈ΩY

Pr{X = x, Y = y}

× log2 Pr{X = x, Y = y}, (2)

where y and ΩY are a realization of Y and its sam-
ple space, respectively.

A measure of information shared between X and
Y is offered by mutual information, defined as [20]

I(X;Y ) = H(X) +H(Y )−H(X,Y )

=
∑

x∈ΩX ,y∈ΩY

Pr{X = x, Y = y}

× log2
Pr{X = x, Y = y}

Pr{X = x}Pr{Y = y}
. (3)

Mutual information in (3) is always positive and
symmetric. I(X;Y ) = 0 indicates that X and Y
are marginally independent. The definition can
be extended to three variables, X, Y , and Z, for
which a multivariate mutual information reads [21]

I(X;Y ;Z) = I(X;Z) + I(Y ;Z)− I(X,Y ;Z)

=
∑

x∈ΩX ,y∈ΩY ,z∈ΩZ

Pr{X = x, Y = y, Z = z} log2
Pr{X = x, Y = y}Pr{Y = y, Z = z}Pr{X = x, Z = z}

Pr{X = x}Pr{Y = y}Pr{Z = z}Pr{X = x, Y = y, Z = z}
,

(4)
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Figure 1: Illustrative Venn diagrams for key information-
theoretic quantities.

where z is a realization of Z and ΩZ is the sample
space. I(X,Y ;Z) in (4) represents mutual infor-
mation between Z and (X,Y ). Similar to (3), mul-
tivariate mutual information defined in (4) is sym-
metric among X, Y , and Z. However, the value
of I(X;Y ;Z) can be positive or negative. If we
consider Z as a target variable and X and Y as
predictor variables, then a positive mutual infor-
mation can be interpreted as a redundancy in the
information provided by X and Y about Z – some
information of Z shared by X is also shared by Y .
On the other hand, a negative value indicates that
X and Y together provide more information about

Z than the sum of the information provided indi-
vidually by X and Y . In other words, there is a
synergy in the information of Z provided by X and
Y . More information about Z is gained when X
and Y are observed together than when they are
examined independently.

2.2. Application to a fish in the wake of a pitching

airfoil

Given an ensemble of stationary discrete stochas-
tic processes, equations (1), (3), and (4) can be used
to study information encoded in each process as well
as information flow between them. In this article,
we describe the dynamics of the airfoil and the fish
by focusing on the pitching and tail beat frequency,
respectively. Specifically, we use X = {Xt}t∈Z+

and Y = {Yt}t∈Z+ for the time series of the air-
foil pitching frequency and fish tail beat frequency,
respectively.
The first information-theoretic measure we exam-

ine is the entropy of fish swimming, H(Yt). Large
values of entropy will highlight instances in which
the fish randomly changes its tail beat without a
preferred beat frequency, while small values of en-
tropy indicates fish swimming at a preferred tail
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beat frequency. As shown in Fig. 1, part of the en-
tropy of the fish can be associated with the knowl-
edge of the tail beat frequency at the previous time
step (dashed black region). Specifically, we can
compute mutual information I(Yt;Yt−1) to measure
the amount of information about the current state
of the fish, which is encoded in the past state. From
(3), this quantity can be expressed as

I(Yt;Yt−1) = H(Yt) +H(Yt−1)−H(Yt, Yt−1). (5)

This measure encapsulates the degree of pre-
dictability of fish swimming from a time step to
the next one.
Another portion of the fish entropy could be re-

lated to the concurrent pitching of the airfoil, as
shown in Fig. 1 (empty red region). Such an instan-
taneous dependence between the airfoil and the fish
is quantified through I(Xt;Yt) that measures the
amount of information about fish swimming that is
encoded by the airfoil, namely,

I(Xt;Yt) = H(Xt) +H(Yt)−H(Xt, Yt). (6)

This quantity can be used as a measure of the inter-
action between the airfoil and fish at a given time
step.

Moving one step forward, we can combine (5)
and (6) to form the multivariate mutual informa-
tion, I(Yt;Yt−1;Xt−1), which measures the amount
of information in the present state of the fish that is
shared with its past and the past state of the airfoil;
that is,

I(Yt;Yt−1;Xt−1) =

I(Yt−1;Yt) + I(Xt−1;Yt)− I(Yt−1, Xt−1;Yt). (7)

The sign of this quantity indicates a redundancy or
synergy in the information of Yt provided by Xt−1

and Yt−1. A positive value of I(Yt;Yt−1;Xt−1)
suggests the past states of the fish and the airfoil
contain overlapping information about the present
state of the fish. A negative value instead indicates
that knowing the past state of the fish and the air-
foil together conveys more information about the
present state of the fish than knowing them inde-
pendently. Figure 1 also illustrates the notion of
multivariate entropy (green region).

Mutual information in (6) quantifies the informa-
tion shared between the airfoil and the fish. How-
ever, testing for independence does not translate
into an improved understanding of a potential flow
of information from the airfoil to the fish. Such a

measurement is critical for the inference of the in-
fluence of the airfoil pitching on the fish tail beat
frequency. Information flow can be associated with
the notion of transfer entropy, coined by Schreiber
[18], which reads

TEX→Y =I(Yt;Xt−1)− I(Yt;Yt−1;Xt−1)

=H(Yt, Yt−1)−H(Yt−1)

−H(Yt, Yt−1, Xt−1) +H(Yt−1, Xt−1).
(8)

A graphical representation of transfer entropy is in
Fig. 1 (blue region). Transfer entropy is a non-
negative quantity that measures the reduction in
the uncertainty in the prediction of the future state
of Y from its present, due to additional knowledge
about the present of X. In alignment with Wiener’s
principle of causality [22], such a reduction can be
attributed to a directional interaction between X
and Y . If the airfoil does not influence the fish,
then I(Yt;Xt−1) = I(Yt;Yt−1;Xt−1), and the value
of TEX→Y is zero. On the other hand, if the air-
foil influences the fish, TEX→Y would be positive,
indicating that the past state of the airfoil contains
additional information for the prediction of the cur-
rent state of the fish.

Estimation of the probability mass functions
poses a major challenge to the accuracy of the en-
tropy computation [20]. Here, we adopted a sym-
bolic representation of the data, which has been
used in economics, medical science, and genetics
[23, 24, 25], as well as in the study of animal loco-
motion [14, 26, 27, 28]. Specifically, we used binary
symbols such that for a time series {xt}t

N
=1 of length

N , xt ≤ xt+1 is associated with the symbol 1 and
xt > xt+1 is associated with −1. A symbolic rep-
resentation has a three-fold advantage: i) reducing
the effect of measurement noise [29]; ii) mitigating
the problem of selecting a threshold for binning [30];
and iii) affording robust estimation of information-
theoretic quantities from sparse datasets [31].

The proposed symbolic representation reduces
the computation of entropies to the estimation of
at most 23 = 8 values for the probability of all the
possible triplets in (7) and (8). These probability
values were then computed using plug-in estimators
based on the experimental time series [32].
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3. Experimental design

3.1. Setup

Experiments were carried out in a water tun-
nel (Engineering Laboratory Design, Inc.) with
a 240 × 15 × 15 cm3 (length×height×width) test
section. A smaller swimming area within the test
section was constructed by placing two honeycomb
flow straighteners L = 30 cm apart, as shown in
Fig. 2. Metal meshes were used as side walls in the
swimming area to mitigate boundary layer growth,
which may cause potential confounds due to un-
wanted regions of low fluid velocity. The top of
the test section was sealed with an acrylic board to
maintain a height of approximately 10 cm, to help
in mitigating the effect of surface waves; also, the
panel created a high contrast white background for
image tracking from below the test section.

The experiments were recorded using a Nikon
D7000 camera at 30 frames per second with a reso-
lution of 1280× 720 pixels, corresponding to a field
of view of 37 × 21 cm2 (length×width). A fluores-
cent light was used to illuminate the test section
from the top of the water tunnel. A 3D-printed
NACA 0012 airfoil with a chord length of 5 cm (cor-
responding approximately to the fish body length)
and a span of 8 cm was situated in the center of the
water tunnel at the upstream margin of the swim-
ming area. Actuation was realized through an ex-
ternal servomotor connected to a metal rod. The
motion of the servomotor was controlled by an Ar-
duino Uno microcontroller (Arduino Uno, Arduino,
Italy), which was programmed using the MATLAB
support package for Arduino.

Prior to experimental trials, extensive particle
image velocimetry (PIV) [33] was undertaken to
characterize the flow field throughout the test sec-
tion. The PIV system consisted of a Raypower
continuous-wave laser with 532 nm wavelength, a
Phantom high-speed camera, and a timer box (Dan-
tec Dynamics, Skovlunde, Denmark). Polyamid
particles of 50µm in diameter were used as seeding
particles. In the absence of the airfoil and the fish,
PIV results showed uniform velocity profiles for all
flow rates tested between 5.0 cm/s and 10.0 cm/s.
Flow fields in the wake of the pitching airfoil were
also visualized through PIV. Under each flow rate,
particle motion was recorded for 10 airfoil pitching
cycles at a constant pitching frequency f . Particle
images were then used to quantify the velocity field
around the airfoil.

Figure 2: Schematic of the fish swim tunnel setup.

Figure 3: Photograph of a giant danio. The white bar is
2 cm in length.

3.2. Animals

Experiments were performed in accordance with
relevant guidelines and regulations approved by the
University Animal Welfare Committee (UAWC) of
New York University under protocol number 13-
1424.
In our study, 60 adult giant danios (Devario ae-

quipinnatus) were used for testing, each with a
body length between 5 and 7 cm (Fig. 3). Giant
danio is a highly social species [34], which in their
natural environment live in fast moving streams and
channels [35]. Fish were purchased from an online
vendor (LiveAquaria.com, Rhinelande, WI, USA)
in May 2018 and were housed in a 615-liter vivar-
ium. Water was kept at a temperature of 25± 1◦C
and a pH of 7.2. Fish were exposed to a 12-h light
and 12-h dark period and were fed with flake food
between 6:00 and 7:00 pm every day.

3.3. Experimental procedure

Four different flow speeds (U), U0 = 0 cm/s,
U1 = 5.0 cm/s, U2 = 7.5 cm/s, and U3 = 10.0 cm/s,
corresponding to approximately 0, 1.0, 1.5, and 2.0
body lengths per second, respectively, were tested.
These flow speeds span a typical range of swimming
speeds of groups of schooling giant danios observed
in laboratory settings [36].
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Table 1: Airfoil pitching frequencies for each flow speed.

U (cm/s) 0 5.0 7.5 10.0

TBF− 3∆TBF (Hz) 2.25 2.25 2.75 3.25

TBF (Hz) 3.00 3.00 3.50 4.00

TBF + 3∆TBF (Hz) 3.75 3.75 4.25 4.75

At the beginning of each trial, the water speed
in the tunnel was set to zero, and a single fish was
hand-netted from the vivarium and introduced into
the water tunnel for an initial 5-minute habitua-
tion session to the new environment. Then, the
flow speed was changed to the desired value and
maintained for a second habituation period of 2.5
minutes, followed by another 2.5 minutes of habit-
uation during which the airfoil was commanded to
pitch between ±5◦. A final testing phase of 5 min-
utes was recorded under the same condition using
a high speed camera. A total of 15 fish were tested
at each flow speed. At the end of each trial, the
fish was released back to a separated section of the
vivarium.

During each trial (last 2.5-minute habituation
session and 5-minute testing phase), the airfoil
was actuated at a constant pitching frequency for
10 cycles, before switching to a potentially differ-
ent value, uniformly drawn from the set {TBF −
3∆TBF, TBF, TBF + 3∆TBF} (Table 1), where
TBF and ∆TBF are the mean and standard devia-
tion of the tail beat frequency of the fish swimming
at the corresponding flow speed in the absence of
the airfoil as determined from pilot tests. For each
flow speed, in Table 1 we present the three possible
values of the pitching frequency of the airfoil.

The rationale for this actuation scheme is to cre-
ate an information-rich dynamic interaction with
hydrodynamically-salient changes, while allowing
the fish sufficient time to adjust to the incoming
flow generated by the airfoil. The choice of the time
duration of 10 pitching cycles for each frequency is
based on the advection time scale, T , of the flow
structures generated by the airfoil. For nonzero flow
speeds, the advection time scale can be estimated
from the distance from the trailing edge of the air-
foil to the end of the swim tunnel (D ≈ 25 cm) as
T = D/U . Hence, the time scale at which the fish
should respond to the flow disturbances from the
airfoil should vary between 8 and 19 airfoil pitching
cycles for non-zero flow speeds, as shown in Table

Table 2: Estimated time scale of flow advection expressed as
multiples of airfoil pitching cycles for all pitching frequencies
and nonzero flow speeds.

U (cm/s) 5.0 7.5 10.0

TBF − 3∆TBF 11.25 9.17 8.13

TBF 15.00 11.67 10.00

TBF + 3∆TBF 18.75 14.16 11.88

Figure 4: Underneath camera view of the swim tunnel dur-
ing an experimental test, showing a fish swimming down-
stream of the airfoil. The center line of the fish body is
indicated by a red line. The fish heading and tail beat orien-
tation are indicated by yellow and green lines, respectively.
The airfoil is shown in yellow.

2. Therefore, maintaining 10 consecutive cycles for
each pitching frequency should be sufficient for the
flow disturbances associated with a specific pitching
frequency to be perceived by the fish in almost the
entire test section. At the same time, changing the
pitching frequencies every 10 cycles allowed for im-
plementing about one hundred pitching frequencies
in the 5-min testing phase.

3.4. Data analysis

The pitching frequency of the airfoil and the tail
beat frequency of the fish were estimated from the
video images using a custom-built MATLAB pro-
gram (Fig. 4). Each of the time series contains
9000 data points obtained at 30 frames per second.
Briefly, to track the fish tail beating, each frame of
the video was extracted and binarized based on a
predetermined threshold, such that the dark fish
body would be converted to black and the light
background to white. The centerline of the fish was
identified as the locus of the centroids of each ver-
tical slice of black pixels, see the red line in Fig. 4.
The heading and the tail orientation were identified
by fitting two straight lines on the front and back
quarters of the fish centerline. The tail beat an-
gle of the fish was defined as the angle between the
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Figure 5: An exemplary segment of the tracked airfoil pitch-
ing angle θa (top) and the fish tail beat angle θf (bottom).
θa is binned every 10 beating cycles, with the bin locations
indicated by red lines. θf is binned using the same bin loca-
tions.

heading and tail orientation. Tracking of the air-
foil followed an equivalent process, but a different
threshold was used to facilitate the identification of
the trailing edge from the background. The pitch-
ing angle of the airfoil was then computed from the
trailing edge position.

Exemplary segments of the airfoil pitching angle,
θa, and the fish tail beat angle, θf , are shown in
Fig. 5. The two time series of the airfoil pitching
and fish tail beat angles were then converted into
pitching and tail beat frequencies. First, the local
maxima of θa were identified from Fig. 5, to label
the beginning of a pitching cycle. Then, the pitch-
ing angles were aggregated for w = 10 consecutive
cycles, starting from the time of the switching of
the airfoil pitching frequency, tsw, indicated by the
red vertical lines in Fig. 5. Coarser and finer res-
olutions were also explored in our analysis, with w
attaining values smaller or larger than 10.

The analysis of the time series of the tail beat
angle of the fish was synchronized with the switch-
ing of airfoil pitching angle frequencies. Within
each window, we computed the total number of tail
beats by counting the number of local maxima in θf
(Fig. 5(b)). An average tail beat frequency was ob-
tained by dividing the number of tail beats by the
time span of the window. Exemplary time series of
the airfoil pitching and fish tail beat frequencies are
shown in Fig. 6. Each time series contained N =
80 to 120 data points, depending on the pitching
frequencies of the airfoil, as indicated in Table 1.
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Figure 6: Time series of (a) the airfoil pitching frequency
and (b) fish tail beat frequency derived from the time series
of the angles partially shown in Fig. 5.

Frequency data were ultimately summarized into
binary symbols based on the relative increase and
decrease of consecutive data points, which was used
as input for our information-theoretic analysis, en-
tailing the study of the entropy of fish swimming
(1), the predictability of fish swimming from the
past to the current state (5), the instantaneous de-
pendence of fish swimming on the airfoil pitching
(6), and information flow from the airfoil to the
fish (8).

Utilizing binary symbols, the total number of
possible combinations of all the triplets in Eq. (7)
and (8) is 23 = 8, resulting in 10 to 15 observations
available for each combination. The use of a larger
embedding dimensions would lead to some of the
combinations not even being observed in the avail-
able time series. For example, an embedding di-
mension of three would lead to a total of (3!)3 = 216
combinations, which is roughly twice the number of
available observations.

The use of a window of 10 cycles is consistent
with the unitary delay underlying our transfer en-
tropy analysis. As detailed in Table 2, the time
scales associated with the advection of vortices from
the tip of the pitching airfoil vary from 8 to 19 cycles
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for nonzero flow speeds, corresponding to a delay of
approximately one time step between the time se-
ries of the airfoil pitching frequency and the fish tail
beat frequency.
To test the influence of the flow speed on the

selected information-theoretic measures, linear re-
gression fits were conducted on the values of en-
tropy H(Yt), mutual information I(Yt; Yt−1) and
I(Xt; Yt), and transfer entropy TEX→Y computed
from all 60 trials with the speed as the indepen-
dent variable. Significance was ascertained with
p = 0.050.

We used surrogate data sets to test the statistical
significance of the values of I(Xt; Yt) and TEX→Y .
First, under each flow speed, we randomly paired
the 15 time series of the airfoil with the 15 time
series of fish by shuffling. Each pair was con-
verted into binary symbols for the computation of
I(Xt; Yt) and TEX→Y . Mean values of I(Xt; Yt)
and TEX→Y were obtained from the 15 random
pairs and used as surrogate data points in a fic-
titious experiment in which the fish and the air-
foil could not have interacted. This process was
repeated 20000 times to generate empirical prob-
ability distributions for the mean of I(Xt; Yt) and
TEX→Y . A significance level of 0.050 was used to
test if the measured, mean, values of I(Xt; Yt) and
TEX→Y were in the right tail of the correspond-
ing surrogate distribution. Note that this non-
parametric statistical test requires no assumption
on the distribution of the data [37, 38].

To delve into the hydrodynamics of the interac-
tion between the airfoil and the fish, we visualized
the spatial preference of the fish and the wake struc-
ture created by the pitching airfoil. Spatial pref-
erence was estimated by spatially discretizing the
camera view of the swim tunnel with a square mesh
of 0.25 × 0.25 mm2. The spatial preference of the
fish was scored as the probability of the fish resid-
ing in an element during each experimental test.
For each flow rate, we created a heatmap of the av-
eraged spatial preference from the total of 15 fish.

The instantaneous velocity field around the
pitching airfoil was measured by cross-correlating
subsequent particle images recorded before the ex-
perimental trials on fish, as explained in Sec. 3.1.
Cross-correlation was conducted in an open source
software, PIVlab [39], built in MATLAB. For each
flow speed, a mean velocity field was obtained
by averaging instantaneous velocity fields over 10
pitching cycles at the nominal pitching frequency
TBF in Table 1. To quantify the turbulence inten-

sity of the flow in the wake of the airfoil from the
instantaneous velocity fields, we extracted the vari-
ation of the velocity magnitude over time at the
center of the swimming section and computed its
root-mean-square deviation.

4. Results

4.1. Information-theoretic measures

Entropy of fish swimming, computed on tail beat
frequency data, is displayed in Table 3. For all flow
speeds, entropy values are close to the maximum
theoretical value of one, suggesting that fish did not
cruise at a steady tail beat frequency, but consid-
erably varied their tail beat frequency throughout
each trial. No dependence of the entropy on the
flow speed U was identified from linear regression 1

(H(Yt) = 9.61× 10−5(U/U1) + 0.996; p = 0.918).
Table 3 also contains data on mutual information,

I(Yt;Yt−1), which is associated with the degree of
predictability of fish swimming from its past. For
all flow speeds, the value of I(Yt;Yt−1) was on the
order of 0.1, suggesting a moderate memory effect
on fish swimming, whereby only 10% of the uncer-
tainty on the tail beat frequency could be explained
from previous swimming bouts. No dependence of
I(Yt;Yt−1) on the flow speed U was found from lin-
ear regression (I(Yt;Yt−1) = 9.24 × 10−4(U/U1) +
0.0893; p = 0.917).
Delving into the potential role of the pitching

airfoil in explaining the uncertainty of fish swim-
ming, we computed the mutual information be-
tween the current states of the airfoil and the
fish tail beat frequencies, I(Xt;Yt). Mean values
and standard deviations are, again, presented in
Table 3. Although only 1 to 2% of fish uncer-
tainty is explained by the concurrent pitching of
the airfoil, comparison against surrogate data in
Fig. 7 indicated that I(Xt;Yt) was significant at
U = U1 (p = 0.045). For U = U0, we regis-
tered a marginally significant result (p = 0.050).
Also, we found a dependence of mutual informa-
tion on the flow speed, whereby linear regression
indicated that I(Xt;Yt) was negatively related to U
(I(Xt;Yt) = −0.0049(U/U1) + 0.0175; p = 0.033).
Moving one step forward in the study of the in-

teraction between the airfoil and the fish, we scored

1In the fits, the scaling by a characteristic velocity is
needed to ensure that all the coefficients are nondimensional.
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Table 3: Mean and standard error of information-theoretic measures.
U (cm/s) 0 5.0 7.5 10.0

H(Yt) (bits) 0.996± 0.001 0.997± 0.001 0.994± 0.002 0.997± 0.001
I(Yt;Yt−1) (bits) 0.097± 0.013 0.071± 0.008 0.099± 0.018 0.094± 0.009
I(Xt;Yt) (bits) 0.017± 0.003 0.015± 0.004 0.008± 0.004 0.008± 0.003
TEX→Y (bits) 0.027± 0.008 0.025± 0.006 0.013± 0.002 0.010± 0.002

transfer entropy from the airfoil to the fish swim-
ming. Mean values and standard deviations are,
again, collated in Table 3. As one might expect,
transfer entropy readings were higher than those
of mutual information, reaching approximately 3%.
Comparison with surrogate data in Fig. 8 indicated
that TEX→Y was significant (p = 0.022) at U = U0.
A trend was seen at U = U1, where we observed
that TEX→Y fell in the right tail of the distribu-
tion but its p-value was larger than significance
(p = 0.137). As the flow speed increased, the mag-
nitude of TEX→Y decreased, as evidenced from lin-
ear regression (TEX→Y = −0.0093(U/U1)+0.0295;
p = 0.012).

4.2. Visualization of the interaction

Interaction between the airfoil and the fish is vi-
sualized via the heatmap of the fish spatial prefer-
ence and the flow velocity field in the wake of the
airfoil. The spatial preference heatmap shows that
the incoming flow has an effect on fish behavior,
whereby the heatmap at U = U0 is qualitatively
different from U = U1, U2, and U3. At U = U0, fish
swam uniformly in the tunnel without a preferred
location (Fig. 9(a)), whereas at any other speed,
fish exhibited a preference for a downstream loca-
tion near the outlet of the swim section, as shown
in Fig. 9(c)–(g).

Similarly, the flow field in the wake of the airfoil
exhibit distinct flow structures in the absence of a
background flow. At U = U0, vortices generated
by the airfoil diffuse in the vicinity of the airfoil
(Fig. 9(b)), while they are advected downstream
by the mean flow, if present (Fig. 9(d)–(h)).

4.3. Parametric analysis of information-theoretic

measures

To explore the dependence of the information-
theoretic measures on the implementation of the
framework, we conducted a parametric analysis, in
which we examined: i) data resolution, in the form

of variations in the window size w for the compu-
tation of the pitching and tail beat frequencies; ii)
uncertainty, in the form of noisy sampling times for
the acquisition window, and iii) potentially delayed
interactions, through the use of a non-unitary time
delay in the computation of transfer entropy.

Computation of information-theoretic measures
can potentially be affected by the resolution of the
time series. We systematically varied the size of
the discretization windows, w, and evaluated the
values of entropy, mutual information, and transfer
entropy through (1), (5), (6), and (8). To assess
the effect of finer data resolution, we used w = 2
and 5; on the other hand, to examine a coarser data
resolution, we utilized w = 20.

We found that the mean values of H(Yt) were
close to the maximum value of one for all flow
speeds, U , and window sizes, w. Mean values
of I(Yt;Yt−1) were on the order of 0.1 for all U
and w. Through comparison with surrogate data,
I(Xt;Yt) was found to be significantly larger than
chance only at the smallest window size w = 2 for
U = U2. Values of TEX→Y were indistinguishable
from chance for all values of U and w. Linear re-
gression indicated that H(Yt) varied with the flow
speed U for all resolutions w = 2, 5, and 20, while
I(Yt;Yt−1) only at w = 2 and 5. No dependence on
U was found for I(Xt;Yt) and TEX→Y ; details are
presented in Appendix A.

A potential confound in the analysis of the time
series is associated with the sampling time of the
data [30], which in our study affects the aggregation
of the time series in each window for the calcula-
tion of the pitching and tail beat frequency. To ex-
plore the effect of the sampling time, we introduced
uncertainty in the identification of the switching
times, tsw, such that the time series were not ex-
actly aggregated every 10 cycles as in Fig. 5. Ex-
perimentally, such an uncertainty may arise from
the imperfection in the mechanical actuation of the
airfoil. Specifically, we added a random noise to
the times, tsw, such that the time series of angles
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(a) (b)
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(e) (f)

(g) (h)

Figure 9: (a, c, e, g) Heatmap of fish spatial preference averaged over 15 individuals at each flow speed. (b, d, f, h) PIV
measurements of the flow field in the wake of the pitching airfoil averaged over 10 airfoil beating cycles. Measurements are
conducted at (a, b) U = U0, (c, d) U = U1, (e, f) U = U2, and (g, h) U = U3. The root-mean-square deviation of the velocity
magnitude over time measured at the center of the swimming section is (b) 0.13 cm/s, (d) 0.94 cm/s, (f) 1.33 cm/s, and (h)
1.44 cm/s, at U = U0, U1, U2, and U3, respectively. The red dashed lines in (b, d, f, h) indicate the mesh location on one
side of the tunnel wall, which was removed during PIV measurements to minimize blockage of laser illumination. The airfoil is
colored in white.
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were partitioned according to new time instants:
t′sw = tsw + ǫn∆t. Here, ∆t was the period of
a pitching cycle, and ǫn was a real number uni-
formly drawn at random from [−n, n], with n ∈ Z

+.
The values of the entropy, mutual information, and
transfer entropy were computed through (1), (5),
(6), and (8) for w = 10 and n = 0.1, 0.2, and 0.5.

We found that the mean values of H(Yt) were
close to the maximum value of one for all flow
speeds U and uncertainty levels n. Mean values of
I(Yt;Yt−1) were on the order of 0.1 for all n tested.
Through comparison with surrogate data, I(Xt;Yt)
was found to be significant only at the lowest uncer-
tainty level n = 0.1 for U = U0 and U = U1. Sim-
ilarly, TEX→Y was significant at n = 0.1, U = U0

and n = 0.1, U = U1. NeitherH(Yt) nor I(Yt;Yt−1)
were found to be linearly dependent on the flow
speed U for all uncertainty levels n. Linear regres-
sion indicated that mutual information I(Xt;Yt)
depended on U for n = 0.1 and n = 0.5. Trans-
fer entropy TEX→Y was found to relate to U only
for the lowest uncertainty level n = 0.1. Details are
presented in Appendix B.

Finally, we examined the effect of time delay on
the computation of transfer entropy. The transfer
entropy defined in (8) can be generalized to account
for interactions at time delays larger than one. To
test the influence of the time delay, δ, we computed
TEX→Y for δ = 2 and 3. Through comparison
with surrogate data, we failed to identify statisti-
cally significant values of TEX→Y for δ = 2 and
3 at all flow speeds U . No dependence of transfer
entropy TEX→Y on U was found through linear re-
gression for δ = 2 and 3. Details are presented in
Appendix C.

5. Discussion and Conclusions

Information theory offers a potent data-driven
framework for the study of dynamical pro-
cesses. Here, we examined the possibility of an
information-theoretic approach for the study of a
series of controlled experiments, in which a fish
swam in the wake of an actively pitching airfoil. To
create an information-rich interaction between the
airfoil and the fish, pitching frequency of the airfoil
was randomly switched over time. Using the time
series of the pitching frequency of the airfoil and fish
tail beating as inputs, we quantified the uncertainty
of fish swimming and examined whether it could be
partially or completely explained by previous swim-

ming bouts of the animal or concurrent/past pitch-
ing of the airfoil.

The uncertainty of fish swimming was described
by Shannon entropy. In agreement with the premise
of our experiment to create an information-rich
environment for the fish, we recorded high en-
tropy values, H(Yt), across all flow speeds. About
10% of the information encoded by fish swimming
could be explained by previous swimming bouts, as
quantified by the mutual information between the
present and past state, I(Yt−1; Yt). Both H(Yt) and
I(Yt−1; Yt) did not present a dependence on the flow
speed, suggesting that the flow speed did not play
a significant role on the randomness of fish swim-
ming, which was more likely the outcome of the
stochasticity in the dynamics of the airfoil.

The interaction between the airfoil and the
fish was studied in terms of mutual information,
I(Xt; Yt), and transfer entropy, TEX→Y . Mutual
information measures the amount of information
that is simultaneously (within the same time win-
dow of 10 pitching cycles) shared between the fish
and the airfoil. However, mutual information does
not measure information flow from the airfoil to the
fish. In principle, mutual information might reflect
shared information between two processes originat-
ing from common histories or inputs [40, 41], rather
than an authentic dependence between them. Nev-
ertheless, our experiment was unlikely to be con-
ducive to such an experimental confound, given
that the pitching airfoil was commanded to ran-
domly switch, independent of the fish. Therefore,
the large values of mutual information in the ab-
sence of the mean flow and for the lowest flow speed
should indicate a stronger dependence of fish swim-
ming on the airfoil pitching.
By controlling for the effect of the past swim-

ming bouts on the present value of the tail beat
frequency, transfer entropy offers a more concrete
measurement of the potential influence of the airfoil
on fish swimming. Only in the absence of a mean
flow did we find strong evidence for such an in-
fluence, whereby transfer entropy was significantly
higher than chance. For the lowest flow speed, we
registered a weak trend which does not warrant bi-
ologically meaningful conclusions. By varying the
time delay in the computation of transfer entropy,
we found that this influence had a time scale of ap-
proximately 10 pitching cycles, whereby influence
was lost when considering 20 or 30 cycles. Both
mutual information and transfer entropy suggested
that the effect of the airfoil on the fish tended to de-
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crease as the flow speed increased, whereby we iden-
tified negative dependence of both I(Xt; Yt) and
TEX→Y on the flow speed.
Heatmaps of spatial preference and flow field

measurements in the wake of the airfoil might help
formulate an explanation why the interaction be-
tween the airfoil and the fish became negligible at
high speeds. Specifically, varying the flow speed
changed the time that fish were allotted to react to
the incoming coherent structures shed by the airfoil,
which, in turn, could be the determining factor of
the observed reduction in the interaction. In the
absence of the mean flow, U = U0, the coherent
structures generated by the airfoil slowly diffused
in the otherwise quiescent flow, thereby allowing
fish more time to interact with them. This was
also evidenced in the spatial heat maps, which sug-
gested that fish swam uniformly in the flow, with-
out a preferential location. The time scale of the
interaction with the vortices was on the order of
10 pitching cycles, whereby exploring delayed in-
teractions resulted into values of transfer entropy
indistinguishable from chance. On the other hand,
at high flow speeds, vortices generated by the air-
foil were advected downstream quickly by the mean
flow, limiting the time fish can have for reacting.
Within this premise, the interaction between the
fish and the airfoil detected at the largest flow speed
U = U2 using the finest resolution of a window size
of two cycles could be a footprint of a potentially
faster pathway for interaction, such as visual cues
or sound from the motors.
The response of the fish to the airfoil which we

detected through information theory in placid flow
could be due to fish actively modulating their tail
beat to achieve hydrodynamic advantage from the
flow. The premise of fish actively exploiting flow
structures to obtain hydrodynamic advantages has
been observed experimentally [9, 10] through si-
multaneous measurements of fish swimming pat-
tern, muscle activity, and coherent flow structures.
These experiments showed the onset of periodic fish
body undulation in response to the passing of vor-
tical structures. Similar evidence was garnered in
Ref. [42] through experiments on fish swimming in
the wake of a robotic fish, which showed that fish
can actively seek to interact with coherent struc-
tures to reduce their energy expenditure. Thus, it
is tenable that large values of mutual information
and transfer entropy could be associated with the
fish adjusting their swimming to the varying flow
structures from the actively-pitching airfoil.

An alternative explanation for the reduced in-
teraction of the airfoil at higher flow speed may
be found in competing needs of efficient swimming
and maintaining balance. As the flow speed in-
creased, pitching motion of the airfoil should in-
duce increased turbulence intensity in the flow. The
maximum speed at which fish can swim without
losing their balance was found to decrease with the
turbulence intensity [43, 44, 45]. Maintaining their
balance requires a higher level of energy expendi-
ture and may induce higher hydrodynamic drag on
the body, due to the use of pectoral fins to achieve
body control [44]. At increased flow speed, fish
may prioritize the need of maintaining their bal-
ance over achieving a favorable hydrodynamic in-
teraction with the wake of the airfoil. This could
explain the reduced impact of the airfoil pitching
frequency on fish swimming at higher speeds.
Interestingly, at U = U1, we registered a signif-

icant interaction between the airfoil and the fish
through mutual information, but transfer entropy
failed to indicate that this interaction should be in-
terpreted as influence. Perhaps, in the presence of
a mean flow, fish could adjust to the flow perturba-
tion produced by the airfoil within a few pitching
cycles, thereby reducing the predictive power of the
previous state of the airfoil on their current tail beat
frequency. Since mutual information was computed
on the basis of the same time window of 10 airfoil
pitching cycles for the fish and the airfoil, it success-
fully picked up a dependence between the two pro-
cesses. However, this explanation is partially chal-
lenged by the lack of significant influence at U = U1

when using finer data resolutions, whereby we did
not register values of transfer entropy above chance
with a window size of 2 or 5 pitching cycles. Future
studies could seek to experimentally manipulate the
number of cycles at which the airfoil pitched at the
same frequency to further elucidate the time scale
of a potential influence.

Our predictions were robust with respect to mod-
erate uncertainty in the sampling time, whereby
predictions supported by mutual information and
transfer entropy were not affected by the added
noise. In line with our expectations, increasing the
uncertainty in the sampling time caused these pre-
dictions to lose statistical significance. Likely, cop-
ing with larger levels of uncertainty might be possi-
ble by using symbolic embeddings with dimensions
larger than two. However, this may call for new ex-
periments, whereby our short time series challenge
the use of symbolization richer than the one con-
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sidered herein. Interestingly, adding noise did not
lead to false positive results, although we recorded a
significant value of transfer entropy at intermediate
noises and U = U1, where we had only a weak trend
in the absence of the added uncertainty. Increasing
the number of experiments could help clarify the
value of this finding.
Although several other authors have investigated

interaction of fish with coherent flow structures,
they generally focused on periodic flows. For exam-
ple, studies of fish swimming in Refs. [9, 10] exam-
ined the interaction of fish with a periodic vortex
street generated in the wake of a cylinder. Simi-
larly, experiments using robotic fish in Refs. [42, 46]
are limited to steady tail beating at a constant fre-
quency by the robot. Our work is different from
these studies in that we created an information-
rich environment through aperiodic, unsteady flow
structures. Either a periodic vortex street behind a
cylinder or a steady tail beating by a robotic fish at
a constant frequency would lead to a scarcity in in-
formation content. The latter would challenge the
application of an information-theoretic approach,
while failing to faithfully simulate the complexity
of fish swimming [47, 48].

Through this methodological study, we demon-
strated some of the advantages that are brought
about by an information-theoretic approach to fish
swimming, while clarifying some of its potential
methodological and practical limitations. Infor-
mation theory may offer a new lens through which
we can explore and quantify hydrodynamic inter-
actions without the use of physically-based mod-
els. The promising results obtained in our anal-
ysis may pave the way for future studies on the
hydrodynamic advantages of different fish school-
ing patterns. One challenge in inferring interac-
tions among multiple individuals using entropy-
based measures lies in the accurate estimation of
information flow in the presence of possible polyadic
dependencies [49]. It is viable that fish swimming
in a school may rely on polyadic interactions among
one another, in which a fish modulates its behav-
ior according to the locomotion of multiple indi-
viduals in the group simultaneously rather than
through a pairwise interaction with a particular
neighbor. Restraining the analysis to pairwise in-
teractions may fail to unveil the hidden polyadic
dependency, thereby leading to an inaccurate rep-
resentation of interactions within the school. To
address this, multivariate conditional entropy may
be combined with sophisticated network represe-

tation techniques such as hypergraphs [50] and
higher order networks [51], which might help un-
ravel polyadic dependencies involving multiple in-
dividuals in the fish school.
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Appendix A. Effect of data resolution on

information-theoretic mea-

sures

The information-theoretic measures, H(Yt),
I(Yt;Yt−1), I(Xt;Yt), and TEX→Y computed using
time series of frequency binned with window sizes
w = 2, 5, and 20 are detailed in Table A.1.

Mean values of H(Yt) were close to the maximum
value of one for all flow speeds U and window sizes
w. Mean values of I(Yt;Yt−1) were on the order
of 0.1 for all U and w. Through comparison with
surrogate data, I(Xt;Yt) was found significant only
at the smallest window size w = 2 for U = U2. No
significant value of TEX→Y was registered for any
U and w.
Linear regression indicated that H(Yt) depended

on the flow speed U for all resolutions w = 2, 5, and
20. (w = 2: H(Yt) = −0.0132(U/U1) + 0.9983, p =
0.006; w = 5: H(Yt) = −0.0010(U/U1) + 0.9990,
p = 0.017; w = 20: H(Yt) = 0.0022(U/U1)+0.9932,
p = 0.027). I(Yt;Yt−1) was found to be linearly
dependent on the flow speed U for w = 2 and 5.
(w = 2: I(Yt;Yt−1) = −0.0185(U/U1) + 0.1028,
p = 0.052; w = 5: I(Yt;Yt−1) = −0.0118(U/U1) +
0.0822, p = 0.025; w = 20: I(Yt;Yt−1) =
0.0181(U/U1)+ 0.0872, p = 0.877). No dependence
of mutual information I(Xt;Yt) on U was regis-
tered for any w through linear regression (w = 2:
I(Xt;Yt) = 0.0100(U/U1) + 0.0083, p = 0.073;
w = 5: I(Xt;Yt) = 0.0016(U/U1) + 0.0052, p =
0.094; w = 20: I(Xt;Yt) = 0.0030(U/U1) + 0.0164,
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Figure B.1: Time series of airfoil pitching frequency using
10 cycles and an uncertainty level n = 0.5.

p = 0.485). Similarly, no dependence of transfer en-
tropy TEX→Y on U was identified for any w (w = 2:
TEX→Y = 0.0048(U/U1) + 0.0210, p = 0.378; w =
5: TEX→Y = −0.0007(U/U1) + 0.0116, p = 0.704;
w = 20: TEX→Y = −0.0047(U/U1) + 0.0453,
p = 0.484).

Appendix B. Effect of sampling time on

information-theoretic mea-

sures

Here, we demonstrate the effect of uncertainty
in the sampling time on the entropy analysis. An
exemplary time series of airfoil pitching frequency
derived based on ǫn with n = 0.5 is displayed in
Fig. B.1.
The values of entropy, mutual information, and

transfer entropy computed for three levels of noise:
n = 0.1, 0.2, and 0.5 added to the identification of
the switching times tsw for w = 10 are displayed
in Table B.2. Mean values of H(Yt) were close to
the maximum value of one for all flow speeds U and
uncertainty levels n. Mean values of I(Yt;Yt−1) re-
mained on the order of 0.1. Through comparison
with surrogate data, I(Xt;Yt) was found to be sig-
nificant only at the lowest uncertainty level n = 0.1
for U = U0 and U = U1. TEX→Y was significant
at n = 0.1, U = U0 and n = 0.1, U = U1.
Neither H(Yt) or I(Yt;Yt−1) were found to de-

pend on the flow speed U for all uncertainty levels
n. Linear regression indicated that mutual informa-
tion I(Xt;Yt) depended on U for n = 0.1 and n =
0.5 (n = 0.1: I(Xt;Yt) = −0.0069(U/U1) + 0.0198,
p = 0.007; n = 0.2: I(Xt;Yt) = −0.0044(U/U1) +
0.0142, p = 0.104; n = 0.5: I(Xt;Yt) =
−0.0052(U/U1) + 0.0161, p = 0.035). Transfer en-
tropy TEX→Y was found to depend on U only for

the lowest uncertainty level n = 0.1 (n = 0.1:
TEX→Y = −0.0093(U/U1) + 0.0302, p = 0.013;
n = 0.2: TEX→Y = −0.0015(U/U1) + 0.0211, p =
0.663; n = 0.5: TEX→Y = −0.0034(U/U1)+0.0189,
p = 0.189).

Appendix C. Effect of time delay in transfer

entropy analysis

Transfer entropy in (8) can be generalized to ac-
count for interactions at time delays larger than
one. Based on the definition in [52], at a time delay
δ ∈ Z

+, transfer entropy from X to Y reads

TEX→Y (δ) =
∑

yt,yt−1,xt−δ

Pr{Yt = yt, Yt−1 = yt−1, Xt−δ = xt−δ}

× log2
Pr{Yt = yt|Yt−1 = yt−1, Xt−δ = xt−δ}

Pr{Yt = yt|Yt−1 = yt−1}
.

(C.1)

Equation (C.1) quantifies the reduction in the un-
certainty in the prediction of the current state of Y
from its past, due to additional knowledge of X at
δ time steps in the past. The results of TEX→Y at
delays δ = 2 and 3 are shown in Table C.3.
For δ = 2 and 3, TEX→Y was indistinguish-

able from chance in surrogate data. No depen-
dence of transfer entropy TEX→Y on U was found
through linear regression for δ = 2 and 3 (δ = 2:
TEX→Y = −0.0032(U/U1)+0.0174, p = 0.118; δ =
3: TEX→Y = −0.0016(U/U1) + 0.0168, p = 0.514).
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Table A.1: Mean and standard error of H(Yt), I(Yt;Yt−1), I(Xt;Yt), and TEX→Y computed based on different aggregation
window sizes, w. An asterisk represents a significant result (p ≤ 0.050) in comparison with surrogate data.

U = 0 cm/s U = 5.0 cm/s U = 7.5 cm/s U = 10.0 cm/s

H(Yt) (bits)
w = 2 cycles 0.993 ± 0.002 0.993 ± 0.002 0.984 ± 0.003 0.963 ± 0.013
w = 5 cycles 0.999 ± 0.000 0.998 ± 0.000 0.997 ± 0.001 0.997 ± 0.001
w = 20 cycles 0.994 ± 0.002 0.994 ± 0.002 0.997 ± 0.001 0.998 ± 0.001

I(Yt;Yt−1) (bits)
w = 2 cycles 0.113 ± 0.020 0.061 ± 0.007 0.082 ± 0.013 0.072 ± 0.011
w = 5 cycles 0.076 ± 0.006 0.081 ± 0.010 0.069 ± 0.008 0.049 ± 0.005
w = 20 cycles 0.094 ± 0.020 0.079 ± 0.013 0.084 ± 0.015 0.101 ± 0.020

I(Xt;Yt) (bits)
w = 2 cycles 0.013 ± 0.005 0.010 ± 0.003 0.022 ± 0.005* 0.034 ± 0.014
w = 5 cycles 0.005 ± 0.001 0.005 ± 0.002 0.002 ± 0.001 0.002 ± 0.001
w = 20 cycles 0.015 ± 0.005 0.026 ± 0.009 0.015 ± 0.004 0.024 ± 0.006

TEX→Y (bits)
w = 2 cycles 0.026 ± 0.006 0.018 ± 0.008 0.023 ± 0.006 0.038 ± 0.010
w = 5 cycles 0.010 ± 0.002 0.013 ± 0.003 0.013 ± 0.003 0.008 ± 0.002
w = 20 cycles 0.045 ± 0.011 0.043 ± 0.010 0.035 ± 0.012 0.037 ± 0.006

Table B.2: Mean and standard error of H(Yt), I(Yt;Yt−1), I(Xt;Yt), and TEX→Y under different levels of uncertainty in the
identification of the switching times tsw for w = 10 cycles. An asterisk represents a significant result (p ≤ 0.050) in comparison
with surrogate data.

U = 0 cm/s U = 5.0 cm/s U = 7.5 cm/s U = 10.0 cm/s

H(Yt) (bits)
n = 0.1 0.996 ± 0.001 0.996 ± 0.001 0.995 ± 0.002 0.997 ± 0.001
n = 0.2 0.996 ± 0.001 0.997 ± 0.001 0.994 ± 0.002 0.999 ± 0.001
n = 0.5 0.996 ± 0.002 0.996 ± 0.001 0.996 ± 0.001 0.999 ± 0.000

I(Yt;Yt−1) (bits)
n = 0.1 0.098 ± 0.015 0.077 ± 0.009 0.100 ± 0.019 0.094 ± 0.008
n = 0.2 0.095 ± 0.013 0.078 ± 0.011 0.098 ± 0.015 0.091 ± 0.008
n = 0.5 0.095 ± 0.013 0.070 ± 0.007 0.093 ± 0.015 0.090 ± 0.010

I(Xt;Yt) (bits)
n = 0.1 0.019 ± 0.004* 0.016 ± 0.004* 0.006 ± 0.003 0.007 ± 0.003
n = 0.2 0.013 ± 0.004 0.013 ± 0.007 0.006 ± 0.002 0.005 ± 0.002
n = 0.5 0.014 ± 0.003 0.016 ± 0.006 0.005 ± 0.002 0.006 ± 0.002

TEX→Y (bits)
n = 0.1 0.028 ± 0.009* 0.024 ± 0.004 0.017 ± 0.003 0.009 ± 0.002
n = 0.2 0.016 ± 0.004 0.030 ± 0.007* 0.016 ± 0.005 0.015 ± 0.004
n = 0.5 0.019 ± 0.005 0.016 ± 0.003 0.014 ± 0.003 0.012 ± 0.003

Table C.3: Mean and standard error of TEX→Y , in bits, computed at different time delays, δ.

U = 0 cm/s U = 5.0 cm/s U = 7.5 cm/s U = 10.0 cm/s

δ = 2 0.018 ± 0.004 0.013 ± 0.003 0.013 ± 0.003 0.012 ± 0.003
δ = 3 0.017 ± 0.004 0.013 ± 0.003 0.018 ± 0.004 0.012 ± 0.003
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Pérez, A. Ruiz, J. Gayán, An entropy test for single-
locus genetic association analysis, BMC Genetics 11 (1)
(2010) 19.

[26] P. Faure, H. Neumeister, D. S. Faber, H. Korn, Sym-
bolic analysis of swimming trajectories reveals scale in-
variance and provides a model for fish locomotion, Frac-
tals 11 (03) (2003) 233–243.

[27] F. G. Schmitt, L. Seuront, J.-S. Hwang, S. Souissi, L.-C.
Tseng, Scaling of swimming sequences in copepod be-
havior: Data analysis and simulation, Physica A: Sta-
tistical Mechanics and its Applications 364 (2006) 287
– 296.

[28] M. Porfiri, M. Ruiz Maŕın, Symbolic dynamics of an-
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